
CONVEX SETS AND CONVEX FUNCTIONS

CHEE-HAN TAN

Abstract. We define convex sets and convex functions, and explore the intricate relation-
ships between these two concepts. The fundamental idea is that convex functions on Rn can
be identified with certain convex subsets of Rn+1, while convex sets in Rn can be identified
with certain convex functions on Rn. This provides a bridge between a geometric approach
and an analytical approach in dealing with convex functions. In particular, one should be
acquainted with the geometric connection between convex functions and epigraphs.

Preface

The structure of these notes follows closely Chapter 1 of the book “Convex Analysis” by
R. T. Rockafellar [Roc70]. All the theorems and corollaries are numbered independently of
[Roc70], and additional examples or remarks or results from other sources are added as I see
fit, mainly to facilitate my understanding. Any mistakes here are of course my own. Please
report any typographical errors or mathematical fallacy to me by email.

1. Affine Sets

A problem of practical interest is studying geometrical properties of sets of points that are
invariant under certain transformations such as translations and rotations. One approach
would be to model the space of points as a vector space, but this is not very satisfactory. One
reason is that the point corresponds to the zero vector 0, called the origin, plays a special
role, when there is really no reason to have a privileged origin [Gal11].

For two distinct points x, y ∈ Rn, the set of points of the form

(1− λ)x+ λy = x+ λ(y − x), λ ∈ R,

is called the line through x and y. A subset M ⊆ Rn is called an affine set if

(1− λ)x+ λy ∈M for every x ∈M , y ∈M , and λ ∈ R.

For the remaining section, we exploit the fact that almost every affine concept is the analogue
of certain concepts in linear algebra.

�
Roughly speaking, affine sets are vector spaces whose origin we try
to forget about. To distinguish the underlying structure, given any
vector space V , elements of V as a vector space are called vectors,
and elements of V as an affine set are called points.
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Take any two points x, y of an affine set M and λ ∈ R. The combination (1− λ)x+ λy =
x+ λ(y− x) =: z yields another point in M . There are two crucial interpretations of z here.

(1) Writing z = x + λ(y − x), we see that z is obtained from translating the point x
by the vector λ(y − x). With λ = 1, this says that it makes sense to subtract two
points of the affine set, in the sense that for every x, y ∈ M , there exists a unique
(translation) vector v = y − x such that y = x+ v.

(2) Writing z = (1 − λ)x + λy, we say that z is obtained by taking linear combination
of x and y where the coefficients 1 − λ and λ sum to 1. This suggests that linear
combination of points of M is well-defined only if the coefficients sum to 1.

We postpone the explanation of “well-defined” in the last sentence to Section 1.2, where we
justify the necessity of defining a suitable notion of linear combination of points of affine
sets, called affine combination.

1.1. Parallelism and characterisation of affine sets in terms of hyperplanes. Almost
every concept in affine sets is the counterpart of certain concept in linear algebra. We begin
with the exact correspondence between affine sets and subspaces of Rn.

Theorem 1.1. The subspaces of Rn are the affine sets which contain the origin.

Proof. The forward direction is clear, since every subspace of Rn contains the origin 0 and
is closed under addition and scalar multiplication. Conversely, suppose M is an affine set
containing 0. Choose any x, y ∈M and λ ∈ R. Then M is closed under scalar multiplication
since

λx = (1− λ)0 + λx ∈M,

and is closed under addition since

x+ y = 2

(
1

2
(x+ y)

)
= 2

(
1

2
x+

(
1− 1

2

)
y

)
∈M.

Hence M is a subspace of Rn. ª

Given any set M ⊆ Rn and vector a ∈ Rn, the translate of M by a is defined to be the set

M + a = {x+ a : x ∈M}.
It is clear that a translate of an affine set is another affine set. An affine set M is said to be
parallel to an affine set L if M = L+ a for some a ∈ Rn. One can readily check that “M is
parallel to L” is an equivalence relation on the family of affine subsets of Rn, i.e.,

(1) M is parallel to M ;
(2) if M is parallel to L, then L is parallel to M ; and
(3) if M is parallel to L and L is parallel to N , then M is parallel to N .

� This definition of parallelism is restrictive in the sense that it does
not include the idea of a line being parallel to a plane.

Theorem 1.2. Each nonempty affine set M ⊆ Rn is a parallel to a unique subspace L ⊆ Rn.
This L is given by

L = M −M = {x− y : x ∈M, y ∈M}.
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Proof. We first show that M cannot be parallel to two different subspaces. Suppose there
are two subspaces L1, L2 parallel to M . Then L2 = L1 + a for some vector a ∈ Rn from the
equivalence relation of parallelism. Since L2 is a subspace of Rn, we have 0 ∈ L2 and so
−a ∈ L1 and a = −(−a) ∈ L1 since L1 is also a subspace of Rn. In particular, we have that
L2 = L1 + a ⊆ L1. A similar argument shows that L1 ⊆ L2 and so L1 = L2, establishing
the uniqueness. Now, observe that for any x ∈ M , the affine set M − x is a translate of M
containing the origin 0. It follows from Theorem 1.1 and the uniqueness proof above that
this set must be the unique subspace L parallel to M . Since L = M − x no matter which
x ∈M is chosen, we actually have L = M −M . ª

Theorem 1.2 simply says that an affine set M ⊆ Rn is a translation of some subspace
L ⊆ Rn. Moreover, L is uniquely determined by M and independent of the choice of x ∈M ,
so M = L + x for any x ∈ M . We can now define the dimension of a non-empty affine
set as the dimension of the subspace parallel to it, which is well-defined from Theorem 1.2.
Affine sets of dimension 0, 1, and 2 are called points, lines, and planes, respectively. An
(n− 1)-dimensional (or 1-codimensional) affine set in Rn is called a hyperplane.

Theorem 1.3. Given β ∈ R and a nonzero b ∈ Rn, the set

H = {x ∈ Rn : 〈b, x〉 = β}
is a hyperplane in Rn. Moreover, every hyperplane in Rn may be represented in this way,
with b and β unique up to a common nonzero scalar multiple.

Proof. For the forward direction, observe that H is an (n−1)-dimensional subset of Rn since
it is the solution set of a one-dimensional linear system in n variables. To see that H is
affine, take any x, y ∈ H and λ ∈ R. Then

〈b, (1− λ)x+ λy〉 = (1− λ)〈b, x〉+ λ〈b, y〉 = (1− λ)β + λβ = β,

which gives (1 − λ)x + λy ∈ H. Conversely, let H ⊂ Rn be a hyperplane and L ⊂ Rn the
subspace parallel to H, i.e., H = L + a for some a ∈ H. Since dim(L) = n − 1, we can
write L as span(b)⊥ ⊂ Rn for some nonzero vector b ∈ Rn (unique up to a nonzero scalar
multiple). Consequently,

H = span(b)⊥ + a = {x+ a ∈ Rn : 〈b, x〉 = 0}
= {y ∈ Rn : 〈b, y − a〉 = 0}
= {y ∈ Rn : 〈b, y〉 = 〈b, a〉 =: β}.

ª

The vector b ∈ Rn\{0} in Theorem 1.3 is called a normal to the corresponding hyperplane
H. Any hyperplane of Rn (or more generally a Euclidean space) has exactly two unit normal
vectors, and it separates Rn into two half-spaces; see Figure 1. We generalise Theorem 1.3
to any affine subset of Rn, characterising it as the solution set of an inhomogeneous linear
system.

Theorem 1.4. Given b ∈ Rm and B ∈ Rm×n, the set

M = {x ∈ Rn : Bx = b}
is an affine set in Rn. Moreover, every affine set in Rn may be represented in this way.
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x0

b

bTx = β

(a) Hyperplane in R2

b

x0
bTx ≥ β

bTx ≤ β

(b) Half-space in R2

Figure 1. Hyperplane and half-space in R2, with a normal vector b ∈ R2 and
a point x0 in the hyperplane.

Proof. The forward direction is clear. Conversely, let M ⊆ Rn be any affine set. If M = Rn

or M = ∅, then we can choose B = 0m×n ∈ Rm×n with b = 0 ∈ Rn or b 6= 0, respectively.
Otherwise, let L ⊂ Rn be the subspace parallel to M and b1, . . . , bm a basis for L⊥. For some
a ∈M we have

M = L+ a = L⊥⊥ + a = {x+ a ∈ Rn : 〈bj, x〉 = 0, j = 1, . . . ,m}
= {x+ a ∈ Rn : Bx = 0}
= {y ∈ Rn : By = Ba =: b},

where B ∈ Rm×n is the matrix with rows b1, . . . , bm. ª

Corollary 1.5. Every affine subset of Rn is an intersection of a finite collection of hyper-
planes.

Proof. Let M be any affine subset of Rn. Theorem 1.4 asserts that

M = {x ∈ Rn : 〈bj, x〉 = βj, j = 1, . . . ,m} =
m⋂
j=1

Hj,

where bj ∈ Rn and βj ∈ R are the jth row of B ∈ Rm×n and the jth component of b ∈ Rn,
respectively, and

Hj = {x ∈ Rn : 〈bj, x〉 = βj}, j = 1, . . . ,m.

Each Hj is a hyperplane (bj 6= 0), or the empty set (bj = 0, βj 6= 0) which can be regarded
as the intersection of two different parallel hyperplanes, or Rn (bj = 0, βj = 0) which can be
regarded as the intersection of the empty collection of hyperplanes. ª

4



1.2. Affine combinations and affine hulls. Attempting to extend the notion of linear
combination of vectors in vector spaces to that of points in affine sets in Rn is a nontrivial
task. The naive approach, where we define linear combination of points by associating
points with vectors is problematic, because vector addition depends crucially on the choice
of coordinate systems. It turns out that if we impose the additional constraint that the
coefficients sum to 1, then the above definition is intrinsic, in the sense that it is independent
from the choice of the origin o in the affine set.

Lemma 1.6. Let M ⊆ Rn be any affine set, and x1, . . . , xm be points in M . Let λ1, . . . , λm
be a sequence of scalars in R . For any two points o,o′ ∈M ,

(a) if λ1 + · · ·+ λm = 1, then

o +
m∑
j=1

λj(xj − o) = o′ +
m∑
j=1

λj(xj − o′)

and this is written as λ1x1 + · · ·+ λmxm;
(b) if λ1 + · · ·+ λm = 0, then

m∑
j=1

λj(xj − o) =
m∑
j=1

λj(xj − o′).

Proof. For part (a),

o +
m∑
j=1

λj(xj − o) = o +
m∑
j=1

λj(xj − o′ + o′ − o)

= o +
m∑
j=1

λj(o
′ − o) +

m∑
j=1

λj(xj − o′)

= o + (o′ − o) +
m∑
j=1

λj(xj − o′)

[
Since

m∑
j=1

λj = 1.

]

= o′ +
m∑
j=1

λj(xj − o′)

Part (b) follows from a similar computation just given. ª

Lemma 1.6 essentially says that the combination of points λ1x1+· · ·+λmxm is well-defined
if and only if either the coefficients sum to 1 which results in a point or the coefficients sum to
0 which results in a vector. An affine combination or barycenter of m points x1, . . . , xm ∈ Rn

is a sum λ1x1 + · · ·+ λmxm, where λ1, . . . , λm ∈ R and λ1 + · · ·+ λm = 1.

Theorem 1.7. A nonempty subset of Rn is affine if and only if it contains all the affine
combinations of its elements.

Proof. By definition, a set M ⊆ Rn is affine if and only if M is closed under taking affine
combinations with m = 2. We must show that affineness of M also implies that M is closed
under taking affine combinations with m > 2. Let us proceed by induction on m. The base
case m = 2 follows from affineness of M . Suppose the statement holds for some m > 2.
Let x1, . . . , xm+1 ∈M and λ1, . . . , λm+1 be scalars in R such that λ1 + · · ·+ λm+1 = 1. The
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statement coincides with the induction hypothesis if one of the scalars is zero, so suppose
λ1, . . . , λm+1 are all nonzero and assume WLOG that λm+1 6= 1. Then

z :=
m+1∑
j=1

λjxj =
m∑
j=1

λjxj + λm+1xm+1

= (1− λm+1)
m∑
j=1

(
λj

1− λm+1

)
xj + λm+1xm+1

= (1− λm+1) y + λm+1xm+1.

Since
m∑
j=1

λj
1− λm+1

=
λ1 + · · ·+ λm

1− λm+1

=
1− λm+1

1− λm+1

= 1,

it follows that y is an affine combination of m points in M and we have y ∈M by induction
hypothesis. Since M is affine and z is an affine combination of y and xm+1, we conclude that
z ∈M , as desired. ª

Theorem 1.8. The intersection of an arbitrary collection of affine sets is an affine set.

Proof. Let Mi ⊆ Rn be an affine sets for all i ∈ I, where I is an arbitrary index set. Consider

M =
⋂
i∈I

Mi and let x, y ∈M and λ ∈ R. Then x, y ∈Mi for any i ∈ I and since Mi is affine,

it follows that z := (1− λ)x+ λy ∈ Ci for any i ∈ I, i.e., z ∈M . ª

Theorem 1.8 motivates the following definition: Given any S ⊆ Rn, the affine hull of S,
denoted by aff(S), is the unique smallest affine set containing S; namely, the intersection of
all affine sets containing S. In other words, if M ⊆ Rn is any affine set containing S, then
aff(S) ⊆M . Below are some examples:

♣ For two distinct points x, y ∈ Rn, aff{x, y} is the line through x and y.
♣ For three distinct points x, y, z ∈ Rn that are not collinear, aff{x, y, z} is the plane

passing through them.
♣ The affine hull of a set of (n+ 1) points not in a hyperplane in Rn is Rn.
♣ The affine hull of the set {(x, y, z) ∈ R3 : x2 + y2 = 1, z = 1} is the plane {z = 1}.

The definition above can be viewed as a characterisation of aff(S) from the outside, but it
is not immediately clear how an element in aff(S) relates to elements of S. This motivates
the next theorem and in some sense it provides a characterisation of aff(S) from the inside.

Theorem 1.9. For any S ⊆ Rn, aff(S) is the set of all affine combinations of elements of
S. That is,

aff(S) =

{
m∑
j=1

λjxj : x1, . . . , xm ∈ S,
m∑
j=1

λj = 1,m ∈ N

}
.

Proof. Let C denote the set of all affine combinations of elements of S. Since elements of S
belong to aff(S), we have C ⊆ aff(S) by Theorem 1.8. For the reverse inclusion, it suffices
to show that C is an affine set since C contains S and aff(S) ⊆ M for any affine set M
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containing S from the definition of affine hull. To this end, take any y, z ∈ C. There exists
x1, . . . , xk, xk+1, . . . , xm ∈ S and scalars λ1, . . . , λk, λk+1, . . . , λm such that

y =
k∑
j=1

λjxj, z =
m∑

j=k+1

λjxj, and
k∑
j=1

λj =
m∑

j=k+1

λj = 1.

For any µ ∈ R we have

(1− µ)y + µz =
k∑
j=1

(1− µ)λjxj +
m∑

j=k+1

µλjxj =
m∑
j=1

Λjxj,

with
m∑
j=1

Λj =
k∑
j=1

(1− µ)λj +
m∑

j=k+1

µλj = (1− µ) + µ = 1.

This means that (1− µ)y + µz is an affine combination of elements of C and since y, z ∈ C
were arbitrary, this shows that C is affine, as desired. ª

1.3. Affine independence and affine basis. The analogue of the concept of linear inde-
pendence in vector spaces is affine independence in affine sets of Rn. A set of (m+ 1) points
b0, b1, . . . , bm ∈ Rn is said to be affinely independent if aff{b0, b1, . . . , bm} is m-dimensional.
The next theorem shows that this definition is equivalent to the condition of linear indepen-
dence of certain set of m vectors.

Theorem 1.10. Let I be the index set {0, 1, . . . ,m}. A set of (m+ 1) points b0, b1, . . . , bm ∈
Rn is affinely independent if and only if the set of m vectors {bj − bk}j∈I\{k} is linearly
independent for some k ∈ I.

Proof. Let M = aff{b0, b1, . . . , bm}. By Theorem 1.1, we can write M = L + bk for some
k ∈ I, where L is the subspace given by

L = aff{b0 − bk, b1 − bk, . . . , bm − bk}.
Since dim(M) = dim(L), it follows (upon excluding the zero vector bk − bk) that the set of
points b0, b1, . . . , bm ∈ Rn is affinely independent if and only if the set of vectors {bj−bk}j∈I\{k}
is linearly independent. ª

Theorem 1.11. An m-dimensional affine set M can be represented as the affine hull of
(m+ 1) affinely independent points of M .

Proof. Let M be any m-dimensional affine set and L be the m-dimensional subspace parallel
to M . Choose a basis {c1, . . . , cm} of L. Since M = L + b0 for some b0 ∈ M , the chosen
basis of L can be written as b1 − b0, . . . , bm − b0 for some b1, . . . , bm ∈ M . For any x ∈ M ,
x− b0 is a vector of L and it can be written (uniquely) as

x− b0 = λ1(b1 − b0) + · · ·+ λm(b1 − b0),
for some sequence of scalars λ1, . . . , λm. Thus

x = b0 + (x− b0) = (1− (λ1 + · · ·+ λm))b0 + λ1b1 + · · ·+ λmbm

= λ0b0 + λ1b1 + · · ·+ λmbm.

Since λ0+λ1+· · ·+λm = 1, this shows that any x ∈M can be written as an affine combination
of (m+ 1) points b0, b1, . . . , bm of M . The desired statement follows from Theorem 1.9. ª
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We provide another characterisation for the set of affinely independent points, which
is a key ingredient in several beautiful and deep theorems about convex sets, such as
Carathéodory’s theorem, Radon’s theorem, and Helly’s theorem.

Theorem 1.12. A set of (m + 1) points b0, b1, . . . , bm ∈ Rn is affinely independent if and
only if the equations

(1.1)

{
λ0b0 + λ1b1 + · · ·+ λmbm = 0

λ0 + λ1 + · · ·+ λm = 0

can only be satisfied by the scalars λ0 = λ1 = · · · = λm = 0.

Proof. By Theorem 1.10, it suffices to show that the set of m vectors S = {b1−b0, . . . , bm−b0}
is linearly independent if and only if the equations (1.1) can only be satisfied by the scalars
λ0 = λ1 = · · · = λm = 0. To prove the forward direction, suppose (1.1) holds. Then

0 = λ0b0 + λ1b1 + · · ·+ λmbm

= −(λ1 + · · ·+ λm)b0 + λ1b1 + · · ·+ λmbm

= λ1(b1 − b0) + λ2(b2 − b0) + · · ·+ λm(bm − b0).
Since S is linearly independent, this shows that λ1 = · · · = λm = 0 and λ0 = −(λ1 + · · · +
λm) = 0. The reverse direction is straightforward using a similar argument to the one just
given. ª

An important property of the set of linearly independent vectors S = {v1, . . . , vm} is that
any x ∈ span(S) can be written uniquely as

x = λ1v1 + · · ·+ λmvm

for some scalars λ1, . . . , λm. A similar result holds for affinely independent points.

Theorem 1.13. Given any (m + 1) points b0, b1, . . . , bm ∈ Rn, let M = aff{b0, b1, . . . , bm}.
Any x ∈ M can be written uniquely as the affine combination of b0, b1, . . . , bm for some
sequence of scalars in R if and only if the set of points b0, b1, . . . , bm is affinely independent.

Proof. By Theorem 1.9, any x ∈M = aff{b0, b1, . . . , bm} can be written as

x = λ0b0 + λ1b1 + · · ·+ λmbm, with λ0 + λ1 + · · ·+ λm = 1.

Define the index set I = {0, 1, . . . ,m}. We must prove that the sequence of scalars {λj}j∈I
in such an expression of x ∈ M is unique if and only if the set of points {bj}j∈I is affinely
independent. Suppose the sequence of scalars is unique, and that

µ1(b1 − b0) + · · ·+ µm(bm − b0) = 0

for some scalars µ1, . . . , µm ∈ R. Since

µ1(b1 − b0) + · · ·+ µm(bm − b0) = 0 = 0(b1 − b0) + · · ·+ 0(bm − b0),
it follows from the uniqueness assumption that µ1 = · · · = µm = 0. Thus the set of vectors
b1 − b0, . . . , bm − b0 is linearly independent, and the affine independence of {bj}j∈I follows
from Theorem 1.10. Conversely, suppose the set of points {bj}j∈I is affinely independent, and
the sequence of scalars {λj}j∈I is not unique, i.e., there exists another sequence of scalars
{µj}j∈I such that

x = µ0b0 + µ1b1 + · · ·+ µmbm, with µ0 + µ1 + · · ·+ µm = 1.
8



Then we have -

0 = x− x = (λ0 − µ0)b0 + (λ1 − µ1)b1 + · · ·+ (λm − µm)bm,

with
m∑
j=0

λj − µj =
m∑
j=0

λj −
m∑
j=0

µj = 1− 1 = 0.

By Theorem 1.12, λj − µj = 0 for every j ∈ I, i.e., the sequence of scalars {λj}j∈I is
unique. ª

Given an affine set M ⊆ Rn, the set of (m + 1) points {b0, b1, . . . , bm} in M is an affine
basis of M if any x ∈M can be written uniquely as

x = λ0b0 + λ1b1 + · · ·+ λmbm,

for some sequence of scalars λ0, λ1, . . . , λm that sums up to 1. The scalars {λ0, λ1, . . . , λm}
are called the barycentric coordinates of x over {b0, b1, . . . , bm}. The origin of the term
barycentric coordinates stems from the following physical interpretation: If the bj’s are
viewed as bodies having weights λj’s, then the point x is the barycenter of the bj’s where
the weights have been normalised so that λ0 + λ1 + · · ·+ λm = 1.

1.4. Affine transformations. Corresponding to linear transformation is the concept of
affine transformation, i.e., any single-valued mapping T : Rn → Rm satisfying

T [(1− λ)x+ λy] = (1− λ)Tx+ λTy

for every x, y ∈ Rn and λ ∈ R.

Theorem 1.14. An affine transformation T : Rn → Rm preserves affine combinations of
points in Rn. That is, for any x1, . . . , xk ∈ Rn and λ1, . . . , λk ∈ R satisfying λ1+· · ·+λk = 1,
we have

T

(
k∑
j=1

λjxj

)
=

k∑
j=1

λjTxj.

Proof. We proceed by induction on k. The base case k = 1 is trivial, and the case k = 2
follows from the definition of affine transformation. Suppose the statement holds for some
k > 2. Let x1, . . . , xk+1 ∈ Rn and λ1, . . . , λk+1 be scalars in R such that λ1 + · · ·+ λk+1 = 1.
The statement coincides with the induction hypothesis if one of the scalars is zero, so suppose
λ1, . . . , λk+1 are all nonzero and assume WLOG that λk+1 6= 1. Then

T

(
k+1∑
j=1

λjxj

)
= T

(
k∑
j=1

λjxj + λk+1xk+1

)

= T

(
(1− λk+1)

k∑
j=1

(
λj

1− λk+1

)
xj + λk+1xk+1

)

= (1− λk+1)T

(
k∑
j=1

(
λj

1− λk+1

)
xj

)
+ λk+1Txk+1

= (1− λk+1)Ty + λk+1Txk+1.
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Since
k∑
j=1

λj
1− λk+1

=
λ1 + · · ·+ λk

1− λk+1

=
1− λk+1

1− λk+1

= 1,

it follows that y is an affine combination of k points in Rn and using the induction hypothesis,
we obtain

T

(
k+1∑
j=1

λjxj

)
= (1− λk+1)Ty + λk+1Txk+1

= (1− λk+1)
k∑
j=1

(
λj

1− λk+1

)
Txj + λk+1Txk+1

=
k∑
j=1

λjTxj + λk+1Txk+1 =
k+1∑
j=1

λjTxj.

ª

Theorem 1.15. The affine transformations from Rn to Rm are the mappings T of the form
Tx = Ax+ a, where A is a linear transformation from Rn to Rm and a ∈ Rm.

Proof. Suppose T : Rn → Rm is affine. Let a = T0 and A : Rn → Rm be the mapping given
by Ax = Tx−a. Then A0 = 0 by construction. We claim that A is a linear transformation.
Indeed, for any x, y ∈ Rn and α ∈ R we have

A(αx) = T (αx)− a = T (αx+ (1− α)0)− a
= αTx+ (1− α)T0− a
= αTx− αa
= α(Tx− a) = αAx

A(x+ y) = A

(
2

(
1

2
(x+ y)

))
= 2

(
T

(
1

2
(x+ y)

)
− a
)

= 2

(
1

2
Tx+

1

2
Ty − a

)
= Tx+ Ty − 2a

= (Tx− a) + (Ty − a) = Ax+ Ay.

Conversely, suppose Tx = Ax + a where A : Rn → Rm is any linear transformation and
a ∈ Rm. Choose any x, y ∈ Rn and λ ∈ R. Then

T [(1− λ)x+ λy] = A [(1− λ)x+ λy] + a

= (1− λ)Ax+ λAy + (1− λ)a+ λa

= (1− λ) (Ax+ a) + λ(Ay + a)

= (1− λ)Tx+ λTy.

Hence T is an affine transformation from Rn to Rm. ª

Theorem 1.16. Let T : Rn → Rm be an affine transformation.
10



(a) The inverse of T , if it exists, is affine.
(b) For any affine set M ⊆ Rn, the image of M under T ,

T (M) = {Tx ∈ Rm : x ∈M},
is an affine set in Rm.

(c) T preserve affine hulls, i.e., T (aff(S)) = aff(TS) for any S ⊆ Rn, where TS is the
image of S under T .

Proof. For part (a), we assume that T−1 : Rm → Rn exists and show that T−1 is affine.
Consider y1, y2 ∈ Rm. There exists corresponding points x1, x2 ∈ Rn such that Tx1 = y1 and
Tx2 = y2, or equivalently, T−1y1 = x1 and T−1y2 = x2. Since T is affine, for any λ ∈ R we
have

(1− λ)y1 + λy2 = (1− λ)Tx1 + λTx2 = T [(1− λ)x1 + λx2]

which implies that

T−1 [(1− λ)y1 + λy2] = (1− λ)x1 + λx2 = (1− λ)T−1y1 + λT−1y2,

establishing the affinity of T−1. For part (b), let y1, y2 ∈ T (M) and λ ∈ R. There exists
corresponding points x1, x2 ∈ M such that Tx1 = y1 and Tx2 = y2. We will show that the
point z = (1− λ)y1 + λy2 ∈ T (M). Indeed,

z = (1− λ)Tx1 + λTx2 = T [(1− λ)x1 + λx2] ∈ T (M),

since M is affine and x1, x2 ∈M . For part (c), first take any x ∈ aff(S). From Theorem 1.9,
there exists elements x1, . . . , xk ∈ S and scalars λ1, . . . , λk ∈ R such that

x =
k∑
j=1

λjxj and
k∑
j=1

λj = 1.

By Theorem 1.14, we have that

Tx = T

(
k∑
j=1

λjxj

)
=

k∑
j=1

λjTxj ∈ aff(TS),

since Txj ∈ TS for all j = 1, . . . , k. This shows that T (aff(S)) ⊆ aff(TS). For the reverse
inclusion, it suffices to show that T (aff(S)) is an affine set since T (aff(S)) contains TS and
aff(TS) ⊆ M for any affine set M ⊆ Rm containing TS from the definition of affine hull.
The affineness of T (aff(S)) follows from part (b). ª

Theorem 1.17. Let {b0, b1, . . . , bm} and {b′0, b′1, . . . , b′m} be affinely independent sets in Rn.
Then there exists a one-to-one affine transformation T of Rn onto itself, such that Tbi = b′i
for i = 0, 1, . . . ,m. If m = n, then such T is unique.

Proof. Enlarging the given affinely independent sets if necessary, we can reduce the problem
to the case where m = n. By Theorem 1.10, the sets of n vectors V = {b1 − b0, . . . , bn − b0}
and W = {b′1 − b′0, . . . , b′n − b′0} are linearly independent in Rn, hence they are bases of Rn.
It is well-known that there exists a unique one-to-one linear transformation A from Rn to
itself, mapping the basis V to the basis W . The desired affine transformation is then given
by Tx = Ax+ a, where a = b′0 − Ab0. Indeed,

Tbj = Abj + (b′0 − Ab0) = A(bj − b0) + b′0 = b′j − b′0 + b′0 = b′j for every j = 1, . . . , n.

ª
11



Corollary 1.18. Let M1 and M2 be any two affine sets in Rn of the same dimension. Then
there exists a one-to-one affine transformation T of Rn onto itself such that TM1 = M2.

Proof. Let M1,M2 be any two affine sets in Rn of the same dimension m ≤ n. By Theorem
1.11, M1 and M2 can be written as affine hulls of two affinely independent sets of (m + 1)
points, respectively. The desired result follows immediately from Theorem 1.17 and the fact
that affine transformation preserves affine hull (see Theorem 1.16). ª

2. Convex Sets and Cones

2.1. Convex sets. A set C ⊆ Rn is said to be convex if (1− λ)x+ λy ∈ C for any x, y ∈ C
and λ ∈ [0, 1]. All affine sets are convex, but the converse is not true. For example, ellipsoids
and cubes in R3 are convex but not affine. Half-spaces are important examples of convex
sets. For any b ∈ Rn \ {0} and any β ∈ R, closed half-spaces are the sets

{x ∈ Rn : 〈x, b〉 ≤ β} and {x ∈ Rn : 〈x, b〉 ≥ β},

and open half-spaces are the sets

{x ∈ Rn : 〈x, b〉 < β} and {x ∈ Rn : 〈x, b〉 > β}.

These sets depend only on the hyperplane H = {x ∈ Rn : 〈x, b〉 = β} and they are all
nonempty and convex.

Theorem 2.1 (Closed under arbitrary intersections). Let Ci ⊆ Rn be a convex set for any

i ∈ I, where I is an arbitrary index set. Then the set C =
⋂
i∈I

Ci is convex.

Proof. Suppose x, y ∈ C and λ ∈ [0, 1]. Then x, y ∈ Ci for any i ∈ I and since Ci is convex,

it follows that λx+ (1− λ)y ∈ Ci for any i ∈ I, i.e., λx+ (1− λ)y ∈
⋂
i∈I

Ci = C.

ª

Example 2.2. Consider the convex polyhedral C defined by

C = {x ∈ Rn : 〈x, bi〉 ≤ βi for all i ∈ I},

where bi ∈ Rn and βi ∈ R for i ∈ I, I a finite index set. C is convex since it can be written
as the intersection of closed half spaces:

C =
⋂
i∈I

{x ∈ Rn : 〈x, bi〉 ≤ βi}.

Definition 2.3. A vector sum λ1x1 + · · · + λmxm is called a convex combination of
x1, . . . , xm if the coefficients λi are all nonnegative and λ1 + · · ·+ λm = 1.

Theorem 2.4. A subset of Rn is convex if and only if it contains all the convex combinations
of its elements.

Proof. By definition, a set C is convex if and only if C is closed under taking convex com-
binations with m = 2. We must show that this implies C is also closed under taking convex
combinations with m > 2. Let us prove this by induction on m. The base case m = 1 is
trivially true. Suppose the statement holds for some m ≥ 1. Let x1, . . . , xm+1 ∈ C and

12



λ1, . . . , λm1 be such that λ1 + · · · + λm+1 = 1. The statement collapses to the induction
hypothesis if one of the scalars is 1, so assume WLOG that λm+1 < 1. Then

z =
m+1∑
j=1

λjxj =
m∑
j=1

λjxj + λm+1xm+1

= (1− λm+1)
m∑
j=1

(
λj

1− λm+1

)
xj + λm+1xm+1

= (1− λm+1) y + λm+1xm+1.

Since
λj

1− λm+1

≥ 0 for any j = 1, . . . ,m and

m∑
j=1

λj
1− λm+1

=
λ1 + · · ·+ λm

1− λm+1

=
1− λm+1

1− λm+1

= 1,

it follows that y is a convex combination of m elements in C and we have y ∈ C by induction
hypothesis. Since C is convex and z = (1− λm+1) y+ λm+1xm+1, we conclude that z ∈ C as
desired.

ª

2.2. Convex hull. Let S ⊆ Rn. The convex hull of S, denoted by conv(S), is the in-
tersection of all the convex sets containing S, or equivalently, the unique smallest convex
set containing S. This definition can be viewed as a characterisation of conv(S) from the
outside, but it is not immediately clear how an element in conv(S) relates to an element in
S. This next theorem provides an answer to this question, and it provides a characterisation
of conv(S) from the inside.

Theorem 2.5. For any S ⊆ Rn, conv(S) is the set of all convex combinations of elements
of S.

Proof. Let C denote the set of all convex combinations of elements of S. Since all elements of
S belong to conv(S), it follows from Theorem 2.4 that C ⊂ conv(S). On the other hand, take
any y, z ∈ C. There exists x1, . . . , xm, xm+1, xn ∈ S and scalars λ1, . . . , λm, λm+1, . . . , λn ≥ 0
such that

y =
m∑
j=1

λjxj, z =
n∑

j=m+1

λjxj, and
m∑
j=1

λj =
n∑

j=m+1

λj = 1.

For any µ ∈ [0, 1], we have

(1− µ)y + µz = (1− µ)
m∑
j=1

λjxj + µ

n∑
j=m+1

λjxj =
n∑
j=1

Λjxj

with
n∑
j=1

Λj =
m∑
j=1

(1− µ)λj +
n∑

j=m+1

µλj = (1− µ) + µ = 1.

Thus C is a convex set. Moreover, S ⊂ C from the definition of C and so conv(S) ⊂ C. The
desired result follows.

ª
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A set which is the convex hull of finitely many points is called a polytope. If {b0, b1, . . . , bm}
is affinely independent, its convex hull is called an m-dimensional simplex, and b0, . . . , bm
are called the vertices of the simplex. In terms of the barycentric coordinates on aff{b0, b1, . . . , bm},
each point of the simplex is uniquely expressible as a convex combination of the vertices.
The point

λ0b0 + λ1b1 + · · ·+ λmbm with λ0 = λ1 = · · · = λm =
1

1 +m
,

is called the midpoint or barycenter of the simplex. When m = 0, 1, 2 or 3, the simplex
is a point, (closed) line segment, triangle or tetrahedron, respectively.

In general, the dimension of a convex set C refers to the dimension of the affine hull of C.

Theorem 2.6. The dimension of a convex set C is the maximum of the dimensions of the
various simplices included in C.

2.3. Convex cone. A set K ⊆ Rn is a cone if it is closed under positive scalar multiplica-
tion, i.e., λx ∈ K whenever x ∈ K and λ > 0. By definition, a cone is a union of half-lines
emanating from the origin, but the origin itself may or may not be included. A set K ⊆ Rn

is a convex cone if it is a cone which is a convex set. Convex cones are not necessarily
“pointed”. Examples of convex cones are subspaces of Rn, halfspaces corresponding to a
hyperplane through the origin, nonnegative orthant Rn

+ and positive orthant Rn
++.

Theorem 2.7. The intersection of an arbitrary collection of convex cones is a convex cone.

Proof. Let Ki ⊆ Rn be a convex cone for all i ∈ I, where I is an arbitrary index set. Consider

K =
⋂
i∈I

Ki. The convexity of K follows from Theorem 2.1. It remains to show that K is a

cone. Let x ∈ K and λ > 0. Then x ∈ Ki for any i ∈ I and since Ki is a cone, it follows
that λx ∈ Ki for any i ∈ I, i.e., λx ∈ K.

ª

The following characterisation of convex cones highlights an analogy between convex cones
and subspaces.

Theorem 2.8. A set K ⊆ Rn is a convex cone if and only if the following properties hold:

(a) x, y ∈ K =⇒ x+ y ∈ K.
(b) x ∈ K,λ > 0 =⇒ λx ∈ K.

Proof. Suppose K is a convex cone. Property (b) follows from the definition of a cone.

Let x, y ∈ K. Let x, y ∈ K. By the convexity of K we have z =
1

2
(x + y) ∈ K and hence

x+y = 2z ∈ K, establishing property (a). Conversely, suppose K satisfies properties (a) and
(b). Then K is a cone by property (b). Let x, y ∈ K and λ ∈ [0, 1]. Then (1− λ)x, λy ∈ K
by property (b) and thus (1 − λ)x + λy ∈ K by property (b), establishing the convexity of
K.

ª

Example 2.9. Consider the set K defined by

K = {x ∈ Rn : 〈x, bi〉 ≤ 0 for all i ∈ I},
14



where bi ∈ Rn for i ∈ I, I an arbitrary index set. It is a convex cone since it can be written
as

K =
⋂
i∈I

{x ∈ Rn : 〈x, bi〉 ≤ 0} =
⋂
i∈I

Ki

and each of these Ki is a convex cone since it is a closed half-space corresponding to a
hyperplane through the origin. Indeed, suppose x ∈ Ki and λ > 0. Then

〈λx, bi〉 = λ〈x, bi〉 ≤ 0 =⇒ λx ∈ Ki.

Theorem 2.10. A set K ⊆ Rn is a convex cone if and only if it contains all the positive
linear combinations of its elements.

Proof. We first show that K ⊆ Rn is a convex cone if and only if αx + βy ∈ K for any
α, β > 0 and x, y ∈ K. Suppose K is a convex cone. Let α, β > 0 and x, y ∈ K. Then both
α

α + β
x and

β

α + β
y are elements of K since K is a cone. By the convexity of K we have

z =
α

α + β
x+

β

α + β
y =

αx+ βy

α + β
∈ K

and hence αx + βy = (α + β)z ∈ K. On the other hand, suppose αx + βy ∈ K for any
α, β > 0 and x, y ∈ K. Convexity of K follows immediately by choosing α = (1 − λ) and
β = λ for λ ∈ [0, 1]. To show that K is a cone, let x ∈ K and λ > 0. Then setting
α = β = λ/2 yields

λx =
λ

2
x+

λ

2
x ∈ K.

The general case follows from an induction argument. We point out that this result can be
viewed as a corollary of Theorem 2.8.

ª

Corollary 2.11. Let S ⊆ Rn be arbitrary and K be the set of all positive linear combinations
of S. Then K is the smallest convex cone which includes S.

Proof. It is clear that S ⊂ K from the definition of K and K is a convex cone since it is
closed under addition and positive scalar multiplication. Suppose S ⊆ T for some convex
cone T . We need to show that K ⊆ T . To this end, take z ∈ K. There exists elements
x1, . . . , xm ∈ S ⊆ T and λ1, . . . , λm > 0 such that

z = λ1x1 + · · ·+ λmxm.

Since T is a convex cone, it follows from Theorem 2.10 that z ∈ T .
ª

A simpler description is possible if S is convex.

Corollary 2.12. Let C ⊆ Rn be convex and let

K = {λx ∈ Rn : λ > 0, x ∈ C}.
Then K is the smallest convex cone which includes C.

Proof. This follows from Corollary 2.11, since every positive linear combination of elements
of C is a positive scalar multiple of a convex combination of elements of C and hence is an
element of K.

ª
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The convex cone obtained by adjoining the origin to the cone in Corollary 2.11 (or Corol-
llary 2.12) is known as the convex cone generated by S (or C) (conic hull?) and is
denoted by cone(S) . Thus the convex cone generated by S is not, under our terminology,
the same as the smallest convex cone containing S, unless the latter cone happens to contain
the origin. If S is nonempty, then cone(S) consists of all nonnegative linear combinations of
elements of S. Clearly

cone(S) = conv(ray(S)),

where ray(S) is the union of the origin and the various rays (half-lines of the form {λy ∈
Rn : λ ≥ 0} generated by the nonzero vectors y ∈ S.

Convex cones are usually simpler to handle than general convex sets, so it is useful to
be able to convert a question about convex sets into a question about convex cones. The
following proposition provides a way of doing this, and it is essentially a generalisation of
that fact that circle is a cross-section of a three-dimensional cone.

Proposition 2.13. Every convex set C ⊆ Rn can be regarded as a cross-section of some
convex cone K in Rn+1.

Proof. Consider the set of pairs S = {(x, 1) ∈ Rn+1 : x ∈ C and let K = cone(S) be the
convex cone generated by S. Consider the hyperplane H = {(x, λ) ∈ Rn+1 : λ = 1}. Since
K consists of pairs (λx, λ) with λ ≥ 0, intersecting K with H may be regarded as C, upon
dropping the extra dimension.

ª

A vector x∗ is said to be normal to a convex set C at a point a ∈ C if x∗ does not make
an acute angle with any line segment in C with a as endpoint, i.e.,

〈x− a, x∗〉 ≤ 0 for every x ∈ C.

Take C to be the half-space {x ∈ Rn : 〈x, b〉 ≤ β} for some β ∈ R and b ∈ Rn \ {0}. If
a ∈ Rn is such that 〈a, b〉 = β, then b is normal to C at a. Indeed,

〈x− a, b〉 = 〈x, b〉 − 〈a, b〉 = 〈x, b〉 − β ≤ 0 for any x ∈ C.
In general, the set of all vectors x∗ normal to C at a is called the normal cone to C at a.
One can verify that the normal cone is always convex.

Another example of a convex cone is the barrier cone of a convex set C. This is defined
as the set of all vectors x∗ such that for some β ∈ R, 〈x, x∗〉 ≤ β for every x ∈ C. Each
convex cone containing 0 is associated with a pair of subspaces as follows.

Theorem 2.14. Let K ⊆ Rn be a convex cone containing 0. There is a smallest subspace
containing K, namely

K −K = {x− y ∈ Rn : x, y ∈ K} = aff(K),

and there is a largest subspace contained within K, namely (−K) ∩K.

Proof. By Theorem 2.8, K is closed under addition and positive scalar multiplication. To be
a subspace, a set must further contain 0 and be closed under multiplication by −1. Clearly
K−K is the smallest such set containing K, and (−K)∩K is the largest such set contained
within K. The former must coincide with aff(K), since the affine hull of a set containing 0
is a subspace by Theorem 1.1. ª

16



3. The Algebra of Convex Sets

Establishing convexity of sets directly from the definition of a convex set can be tedious
and often requires a cunning observation. In this section we will describe some operations
that preserve convexity of sets, and these operations allow us to prove that a set is convex
by constructing it from simple sets for which convexity is known.

If C ⊆ Rn is convex, λ ∈ R, and a ∈ Rn, then the sets C + a and λC are convex, where

C + a = {x+ a : x ∈ C} and λC = {λx : x ∈ C}.
A convex set C ⊆ Rn is said to be symmetric if −C = C. Such a set, if nonempty, must
contain the origin, since it must contain along with each vector x, not only −x, but the
entire line segment between x and −x. The nonempty convex cones which are symmetric
are the subspaces.

Theorem 3.1. If C1, C2 ⊆ Rn are convex, then so is their sum C1 + C2, where

C1 + C2 = {x1 + x2 : x1 ∈ C1, x2 ∈ C2}.
Proof. Let x, y ∈ C1 + C2. There exists elements x1, y1 ∈ C1 and x2, y2 ∈ C2 such that
x = x1 + x2 and y = y1 + y2. For any λ ∈ [0, 1], we have

(1− λ)x+ λy =
[
(1− λ)x1 + λy1

]
+
[
(1− λ)x2 + λy2

]
∈ C1 + C2,

since (1 − λ)x1 + λy1 ∈ C1 and (1 − λ)x2 + λy2 ∈ C2 by the convexity of C1 and C2,
respectively. ª

The convexity of a set C means by definition that

(1− λ)C + λC ⊂ C, λ ∈ (0, 1).

It turns out that equality actually holds for convex sets. A set K is a convex cone if and
only if λK ⊂ K for every λ > 0 and K +K ⊂ K.

If C1, . . . , Cm are convex sets, then so is the linear combination

C = λ1C1 + · · ·+ λmCm.

Such C is called a convex combination of C1, . . . , Cm when all the scalars are nonnegative
and λ1 + · · ·+λm = 1. In that case, it is appropriate to think of C geometrically as a sort of
mixture of C1, . . . , Cm. For the sake of geometric intuition, it is sometimes helpful to regard
C1 + C2 as the union of all the translates x1 + C2 as x1 varies over C1.

Without convexity being involved, one has the following algebraic laws of sets:

C1 + C2 = C2 + C1

(C1 + C2) + C3 = C1 + (C2 + C3)

λ1(λ2C) = (λ1λ2)C

λ(C1 + C2) = λC1 + λC2.

The convex set consisting of 0 alone is the identity element for the addition operation.
Additive inverses do not exist for sets containing more than one element, the best one cay
say in general is that 0 ∈ C + (−C) when C 6= ∅.

Theorem 3.2. If C ⊆ Rn is convex and α1, α2 ≥ 0, then

(λ1 + λ2)C = λ1C + λ2C.
17



Proof. If either λ1 or λ2 is 0, then the result is trivial, so suppose λ1, λ2 > 0. The inclusion ⊂
would be true without the convexity of C. The reverse inclusion follows from the convexity
relation (

λ1
λ1 + λ2

)
C +

(
λ2

λ1 + λ2

)
C ⊂ C

which is well-defined since λ1 + λ2 > 0. ª

Given any two convex sets C1 and C2 in Rn, there is a unique largest convex set C1 ∩ C2

contained in both C1 and C2, and a unique smallest convex set conv(C1 ∪ C2) containing
both C1 and C2. This holds for an arbitrary family of convex sets as well, which means that
the collection of all convex subsets of Rn is a complete lattice under the natural partial
ordering corresponding to inclusion.

Theorem 3.3. Let {Ci : i ∈ I} be an arbitrary collection of nonempty convex sets in Rn,
and let C be the convex hull of the union of the collection. Then

C = ∪

{∑
i∈I

λiCi

}
,

where the union is taken over all finite convex combinations, i.e., over all nonnegative choices
of the coefficients λi such that only finitely many are nonzero and these add up to 1.

Proof. By Theorem (convex combinations), C is the set of all convex combinations of ele-
ments of union of the sets Ci. Actually, we can get C just by taking those convex combi-
nations in which the coefficients are nonzero and vectors are taken from different sets Ci.
Indeed, elements with zero coefficients can be omitted, and if two of the elements with pos-
itive coefficients belong to the same Ci, say x1 and x2, then the term λ1x1 + λ2x2 can be
written as λx, where

λ = λ1 + λ2 and x =

(
λ1
λ

)
x1 +

(
λ2
λ

)
x2 ∈ Ci.

Thus C is the union of the finite convex combinations of the form

λ1Ci1 + · · ·+ µmCim ,

where the indices i1, . . . , im are distinct. ª

Theorem 3.4. Let A be a linear transformation from Rn to Rm.

(a) If C ⊆ Rn is convex, then the image of C under A,

A(C) = {Ax ∈ Rm : x ∈ C},

is convex.
(b) If D ⊆ Rm is convex, then the inverse image of D under A,

A−1(D) = {x ∈ Rn : Ax ∈ D},

is convex.
18



Proof. Let A : Rn → Rm be a linear transformation. To prove part (a), let C ⊆ Rn be
convex, y1, y2 ∈ A(C) and λ ∈ [0, 1]. There exists elements x1, x2 ∈ C such that Ax1 = y1
and Ax2 = y2. We will show that the point z = (1− λ)y1 + λy2 ∈ A(C). Indeed,

z = (1− λ)Ax1 + λAx2 = A
[
(1− λ)x1 + λx2

]
∈ A(C),

since (1− λ)x1 + λx2 ∈ C by the convexity of C. To prove part (b), let D ⊆ Rm be convex,
x1, x2 ∈ A−1(D) and λ ∈ [0, 1]. There exists elements y1, y2 ∈ D such that Ax1 = y1 and
Ax2 = y2. We wil show that the point z = (1 − λ)x1 + λx2 ∈ A−1(D), or equivalently,
Az ∈ D. Indeed,

Az = A
[
(1− λ)x1 + λx2

]
= (1− λ)Ax1 + λAx2 = (1− λ)y1 + λy2 ∈ D,

since D is convex. ª

Theorem 3.5. The orthogonal projection of a convex set C ⊆ Rn onto a subspace L is
another convex set.

Proof. The orthogonal projection onto L is a linear transformation, the one which assigns to
each point x the unique y ∈ L such that (x− y) ⊥ L. ª

4. Convex Functions

Let f be an extended real-valued function f : S −→ R ∪ {±∞} whose domain is a subset
S of Rn. The epigraph of f is the subset of Rn+1 given by

epi(f) = {(x, µ) ∈ S × R : f(x) ≤ µ} ⊆ Rn+1.

We said that f is a convex function on S if epi(f) is convex as a subset of Rn+1. A
concave function on S is a function whose negative is convex. An affine function on S
is a function which is finite, convex, and concave. Observe that epi(f) = ∅ if and only if f
is identically equal to +∞.

The effective domain of a convex function f on S, denoted by dom(f), is the projection
of epi(f) onto Rn:

dom(f) = {x ∈ Rn : (x, µ) ∈ epi(f) for some µ}
= {x ∈ Rn : f(x) < +∞}.

This is a convex set in Rn since it is the image of the convex set epi(f) under a linear
transformation. Its dimension is called the dimension of f . Trivially, the convexity of f is
equivalent to that of the restriction of f to dom(f).

At this point, there are two technical approaches in terms of handling the effective domain.

(1) One could limit attention to functions which are nowhere +∞, so that S coincides
with dom(f) but would vary with f .

(2) One could limit attention to functions which given on all of Rn, since a convex
function f on S can always be extended to a convex function on all of Rn by setting
f(x) = +∞ for x /∈ S.

The second approach will be adopted and so unless stated otherwise, by a convex function we
shall always mean a “convex function with possibly infinite values which is defined throughout
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the space Rn”. Unfortunately, this approach leads to arithmetic calculations involving +∞
and −∞. The rules we adopt are the obvious ones:

α +∞ =∞+ α =∞ for α ∈ (−∞,+∞]

α−∞ = −∞+ α = −∞ for α ∈ [−∞,+∞)

α∞ =∞α =∞ for α ∈ (0,+∞]

α(−∞) = (−∞)α = −∞ for α ∈ (0,+∞]

α∞ =∞α = −∞ for α ∈ [−∞, 0)

α(−∞) = (−∞)α =∞ for α ∈ [−∞, 0)

0∞ =∞0 = 0 = 0(−∞) = (−∞)0

−(−∞) =∞
inf ∅ = +∞

sup∅ = −∞.

The combinations ∞ −∞ and −∞ +∞ are undefined. One can verify that under these
rules, the familiar laws of arithmetic are still valid provided none of the binary sums is the
forbidden ∞−∞ (or −∞+∞).

A convex function f is said to be proper if epi(f) is nonempty and contains no vertical
lines, i.e., f(x) < +∞ for at least one x and f(x) > −∞ for every x. Thus f is proper if
and only if the convex set C = dom(f) is nonempty and the restriction of f to C is finite.
Equivalently, a proper convex function on Rn are the function obtained by taking a finite
convex function f on a nonempty convex set C and then extending it to all of Rn by setting
f(x) = +∞ for x /∈ C.

A convex function which is not proper is improper. Improper convex functions are of
interest mainly as possible by-products of various constructions. Examples of improper
convex function which are not identically +∞ or −∞ is the function f on R defined by

f(x) =


−∞ if |x| < 1,

0 if |x| = 1,

+∞ if |x| > 1.

or the function g on R defined by

g(x) =


−∞ if x ∈ (−∞, 0),

0 if x = 0,

+∞ if x ∈ (0,∞).

By definition, f is convex on S if and only if

(1− λ)(x, µ) + λ(y, ν) =
(

(1− λ)x+ λy, (1− λ)µ+ λν
)
∈ epi(f)

whenever (x, µ), (y, ν) ∈ epi(f) and λ ∈ [0, 1]. In other words, we must have (1−λ)x+λy ∈ S
and

f((1− λ)x+ λy) ≤ (1− λ)µ+ λv

whenever x, y ∈ S, f(x) ≤ µ ∈ R, f(y) ≤ ν ∈ R and λ ∈ [0, 1].
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Theorem 4.1. Let f be a function from C to (−∞,+∞], where C ⊆ Rn is a convex set.
Then f is convex on C if and only if

f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) for all x, y ∈ C and λ ∈ (0, 1).

Theorem 4.2. Let f be a function from Rn to [−∞,+∞]. Then f is convex if and only if
for every λ ∈ (0, 1) we have

f((1− λ)x+ λy) < (1− λ)α + λβ

whenever f(x) < α and f(y) < β.

Proof. Suppose f is convex, then epi(f) is convex as a subset of Rn+1. Let λ ∈ (0, 1) and
x, y ∈ Rn be such that f(x) < α and f(y) < β. Then

ª

Theorem 4.3 (Jensen’s inequality). Let f be a function from Rn to (−∞,+∞]. Then f is
convex if and only if

f

(
m∑
j=1

λjxj

)
≤

m∑
j=1

λjf(xj),

whenever λ1, . . . , λm are nonnegative and λ1 + · · ·+ λm = 1.

Concave functions satisfy the opposite inequalities under similar hypotheses. Affine func-
tions satisfy the inequalities as equations. Thus the affine functions on Rn are the affine
transformations from Rn to R. In the multidimensional case, it follows easily from Theorem
4.1 that every function of the form

f(x) = 〈x, b〉+ α, b ∈ Rn, α ∈ R,

is finite, convex and concave, thus affine in Rn. In fact, every affine function on Rn is of this
form.

4.1. Second-order characterisation of convex functions.

Theorem 4.4. Let f ∈ C2(α, β). Then f is convex if and only if its second derivative f ′′ is
nonnegative throughout (α, β).

Proof. Suppose first that f ′′ ≥ 0 on (α, β). Then f ′ is nondecreasing on (α, β). For α < x <
y < β, λ ∈ (0, 1) and z = (1− λ)x+ λy, we have

f(z)− f(x) =

∫ z

x

f ′(t) dt ≤ f ′(z)(z − x)f ′(z)
[
(1− λ)x+ λy − x

]
= f ′(z)

[
λ(y − x)

]
(4.1)

f(z)− f(y) =

∫ z

y

f ′(t) dt ≤ f ′(z)(z − y) = f ′(z)
[
(1− λ)x+ λy − y

]
= f ′(z)

[
(1− λ)(x− y)

]
.(4.2)

Multiplying (4.1) by (1− λ) and (4.2) by λ and adding them together, we obtain

(1− λ)f(z) + λf(z) ≤ (1− λ)f(x) + λf(y),
21



but the LHS is just f(z) = f((1− λ)x+ λy). Conversely, suppose f ′′ is not nonnegative on
(α, β). Then f ′′ < 0 on some subinterval (α′, β′) by continuity of f ′′. A similar argument as
before shows that for α′ < x < y < β′, λ ∈ (0, 1) and z = (1− λ)x+ λy, we have

f(z)− f(x) > f ′(z)(z − x)

f(z)− f(y) > f ′(z)(z − y)

and hence f(z) > (1− λ)f(x) + λf(y). Thus f is not convex on (α, β). ª

Example 4.5. Below are some functions on R whose convexity is a consequence of Theorem
4.4.

(1) f(x) = eαx, where α ∈ R.

(2) f(x) =

{
xp if x ≥ 0,

+∞ if x < 0,
, where p ∈ [1,∞).

(3) f(x) =

{
−xp if x ≥ 0,

+∞ if x < 0,
, where p ∈ [0, 1].

(4) f(x) =

{
xp if x > 0,

+∞ if x ≤ 0,
, where p ∈ (−∞, 0].

(5) f(x) =

{
(α2 − x2)−1/2 if |x| < α,

+∞ if |x| ≥ α,
, where α > 0.

(6) f(x) =

{
− log x if x > 0,

∞ if x ≤ 0,
.

Theorem 4.6. Let C ⊆ Rn be convex and f ∈ C2(C). Then f is convex on C if and only
if its Hessian matrix

Qx = (qij(x)), qij(x) =
∂2f

∂ξi∂ξj
(ξ1, . . . , ξn),

is positive semidefinite for every x ∈ C.

Proof. The convexity of f on C is equivalent to the convexity of the restriction of f to each
line segment in C, i.e., the convexity of the one-dimensional function gx,d(λ) = f(x+λd) on
the open real interval {λ ∈ R : y+λz ∈ C} for each y ∈ C and z ∈ Rn \{0}. Let y = x+λd.
A straightforward calculation reveals that

g′(λ) = 〈∇yf, d〉
g′′(λ) = 〈∇2

yfd, d〉 = 〈Qyd, d〉.

It follows from Theorem 4.4 that g is convex for each x ∈ C and d ∈ Rn \ {0} if and only if
〈Qyd, d〉 ≥ 0 for every y ∈ C and d ∈ Rn.
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Theorem 4.7. Let f : Rn −→ R be the quadratic function defined by

f(x) =
1

2
〈x,Ax〉+ 〈x, b〉+ α,
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where A ∈ Rn×n is symmetric, b ∈ Rn, and α ∈ R. Then f is convex on Rn if and only if A
is positive semidefinite on Rn.

Example 4.8. Consider the negative of the geometric mean:

f(x) = f(ξ1, . . . , ξn) =

{
− (ξ1ξ2 . . . ξn)1/n if ξ1, . . . , ξn ≥ 0,

+∞ otherwise.
.

A straightforward computation shows that

4.2. Correspondence between convex sets and convex functions. Given any set C ⊆
Rn, we associate with C the indicator function δC : Rn −→ (−∞,+∞] defined by

δC(x) =

{
0 if x ∈ C,
+∞ if x /∈ C.

The epigraph of δC is a “half-cylinder with cross-section C”.

Theorem 4.9. A set C ⊆ Rn is convex if and only if δC(x) is convex.

Proof. Suppose that C ⊆ Rn is convex. Let x, y ∈ Rn and λ ∈ (0, 1). For the “only if”
direction, by Theorem 4.1 it suffices to show that

(4.3) δC((1− λ)x+ λy) ≤ (1− λ)δC(x) + λδC(y).

This inequality is trivially satisfied if either x /∈ C or y /∈ C, so suppose x, y ∈ C. By
convexity of C, (1− λ)x+ λy ∈ C and thus

δC((1− λ)x+ λy) = 0 = (1− λ)δC(x) + λδC(y).

To prove the “if” direction, suppose δC is convex on Rn. Let x, y ∈ C and λ ∈ (0, 1). We
need to show that z = (1− λ)x+ λy ∈ C. The convexity of δC implies that

δC(z) ≤ (1− λ)δC(x) + λδC(y) = 0.

This immediately shows that δC(z) = 0 since δC only takes the values 0 and +∞. Thus
z ∈ C and the convexity of C follows.
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Let C ⊆ Rn be convex. The support function δ∗C of C is defined by

δ∗C(x) = sup
y∈C
〈x, y〉, x ∈ Rn.

The gauge function γC of C is defined by

γC(x) = inf
x∈λC

λ, C 6= ∅, x ∈ Rn.

The Euclidean distance function of C is defined by

d(x,C) = inf
y∈C
|x− y|.
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4.3. Sublevel sets of convex functions.

Theorem 4.10. For any convex function f and any α ∈ [−∞,+∞], the level sets {x ∈
Rn : f(x) < α} and {x ∈ Rn : f(x) ≤ α} are convex.

Proof. The case of strict inequality is immediately from Theorem 4.2, with β = α. The
convexity of the set M = {x ∈ Rn : f(x) ≤ α} follows from the fact that

M =
⋂
µ>α

{x ∈ Rn : f(x) < µ}.

Geometrically, M is the projection on Rn of the intersection of epi(f) and the horizontal
hyperplane {(x, α)} ⊆ Rn+1, so that M can be regarded as a horizontal cross-section of
epi(f).

ª

Corollary 4.11. Let fi be a convex function on Rn and αi ∈ R for each i ∈ I, where I is
an arbitrary index set. Then the set

C =
⋂
i∈I

{x ∈ Rn : fi(x) ≤ αi}

is a convex set.

Example 4.12. Ellipsoids, paraboloids, and spherical balls are convex since each of these
can be realised as the set of points satisfying a quadratic inequality of the form

1

2
〈x,Ax〉+ 〈x, b〉+ α ≤ 0

for some symmetric positive semidefinite matrix Q ∈ Rn×n and some b ∈ Rn and α ∈ R.

Theorem 4.10 and Corollary 4.11 have a clear significance for the theory of systems of
nonlinear inequalities. But convexity proves to be a powerful tool for establishing classi-
cal inequalities such as arithmetic geometric mean inequality, Young’s inequality, Hölder’s
inequality and Minkowski’s inequality.

4.4. Positive homogeneity. A function f on Rn is said to be positively homogeneous
(of degree 1) if for every x one has

f(λx) = λf(x), λ ∈ (0,∞).

Positive homogeneity is equivalent to the epigraph being a cone in Rn+1. An example of a
positively homogeneous convex function that is not a linear function is f(x) = λ|x|.

Theorem 4.13. A positively homogeneous function f : Rn −→ (−∞,+∞] is convex if and
only if

f(x+ y) ≤ f(x) + f(y) for every x, y ∈ Rn.

Proof. This follows from the characterisation of convex cone, since the subadditivity condi-
tion of f is equivalent to epi(f) being closed under addition.

ª
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Corollary 4.14. If f is a positively homogeneous proper convex function, then

f

(
m∑
j=1

λjxj

)
≤

m∑
j=1

λjf(xj),

whenever λ1, . . . , λm > 0.

Corollary 4.15. If f is a positively homogeneous proper convex function, then f(−x) ≥
−f(x) for every x.

Proof.
f(−x) + f(x) ≥ f(x− x) = f(0) ≥ 0.

ª

Theorem 4.16. A positively homogeneous proper convex function f is linear on a subspace
L if and only if f(−x) = −f(x) for every x ∈ L. This is true if merely f(−bi) = −f(bi) for
all the vectors in some basis {b1, . . . , bm} for L.

Proof. The “only if” direction is clear. Suppose f(−bi) = −f(bi) for all the vectors in some
basis {b1, . . . , bm} for L. Then

f(λibi) = λif(bi) for all λi ∈ R.

For any x = λ1b1 + · · ·+ λmbm ∈ L, we have
m∑
j=1

f(λjbj) ≥ f(x)
[
From Theorem 4.13.

]
≥ −f(−x)

[
From Corollary 4.15.

]
≥ −

m∑
j=1

f(−λjbj)
[
From Theorem 4.13.

]
=

m∑
j=1

f(λjbj).

Thus f is linear on L, and in particular f(−x) = −f(x) for every x ∈ L.
ª
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